
CHAPTER 1

Preliminaries

1. Least Squares Approximation

Let V be a vector space, with vectors u,v,w, . . . and scalars α, β, . . . .
The space V is an inner product space if one has defined a function
(·, ·) from V × V to the reals (if the vector space is real) or to the
complex (if V is complex) such that for all u,v ∈ V and all scalars α
the following conditions hold:

(u,v) = (v,u),

(u,v + w) = (u,v) + (u,w),

(αu,v) = α(u,v), (1.1)

(v,v) ≥ 0,

(v,v) = 0⇔ v = 0,

where the overbar denotes the complex conjugate. Two elements u,v
such that (u,v) = 0 are said to be orthogonal.

The most familiar inner product space is Rn with the Euclidean
inner product. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) then

(u,v) =
n∑

i=1

uivi.

Another inner product space is C[0, 1], the space of continuous func-
tions on [0, 1], with (f, g) =

∫ 1

0 f(x)g(x)dx.
The least squares, or “L2” norm is

‖v‖ =
√

(v,v).

This has the following properties, which can be deduced from the prop-
erties of the inner product,

‖αv‖ = |α|‖v‖
‖v‖ ≥ 0,

‖v‖ = 0⇔ v = 0

‖u + v‖ ≤ ‖u‖+ ‖v‖.
1
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The last, called the triangle inequality, follows from the Schwartz in-
equality

|(u,v)| ≤ ‖u‖‖v‖.
In addition to these three properties, common to all norms, the L2 norm
has the “parallelogram property” (so-called because it is a property of
parallelograms)

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2)

which can be verified by expanding the inner products.
Let {un} be a sequence in V .

Definition. A sequence {un} is said to converge to û ∈ V if
‖un − û‖ → 0 as n → ∞ (i.e., for any ε > 0 there exists some N ∈ N
such that n > N implies ‖un − û‖ < ε).

Definition. A sequence {un} is a Cauchy sequence if given ε > 0
there exists N ∈ N such that for all m, n > N ‖un − um‖ < ε.

A sequence which converges is a Cauchy sequence, although the
converse is not necessarily true. If the converse is true for all Cauchy
sequences in a given inner product space, then the space is called com-
plete. We shall assume that all of the spaces we work with from now
on are complete.

A few more definitions from real analysis:

Definition. An open ball centered at x with radius r > 0 is the
set Br(x) = {u : ‖u− x‖ < r}.

Definition. A set S is closed if for every x ∈ S there exists a
sequence {un} ∈ S which converges to x.

Definition. A set S is open if for all x ∈ S there exists an open
ball Br(x) such that Br(x) ⊂ S.

An example of a closed set is the closed interval [0, 1] ⊂ R. An
example of an open set is the open interval (0, 1) ⊂ R. The complement
of an open set is closed, and the complement of a closed set is open.
The empty set is both open and closed, and so is Rn. Given a set
S and some point b outside of S we want to determine under what
conditions there is a point b̂ ∈ S closest to b. That is, such that
‖b̂ − b‖ = d(b, S) where d(b, S) = infx∈S ‖x − b‖. The quantity on
the right of this definition is the greatest lower bound of the set of
numbers ‖x− b‖, and its existence is guaranteed by the properties of
the real number system. What is not guaranteed in advance, and most
be proved here, is the existence of an element b̂ which satisifes the
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equality above. To see the problem, take S = (0, 1) ⊂ R and b = 2,
then d(b, S) = 1 yet there is no point b̂ ∈ (0, 1) such that ‖b̂− 2‖ = 1.

Theorem 1.1. If S is a closed linear subspace of V then there exists
b̂ ∈ S such that ‖b̂− b‖ = d(b, S).

Proof. There exists a sequence of elements {un} ⊂ S such that
‖b−un‖ → d(b, S) by definition of the greatest lower bound. We now
show that this sequence is a Cauchy sequence.

From the parallelogram law we have∥∥∥∥1

2
(b− um)

∥∥∥∥2

+

∥∥∥∥1

2
(b− un)

∥∥∥∥2

=
1

2

∥∥∥∥b− 1

2
(un + um)

∥∥∥∥2

+
1

4
‖un − um‖2.

(1.2)
S is a vector space, therefore

1

2
(un + um) ∈ S ⇒

∥∥∥∥b− 1

2
(un + um)

∥∥∥∥2

≥ d2.

Then since ‖b− un‖ → d(b, S), we have:∥∥∥∥1

2
(b− un)

∥∥∥∥2

→ 1

4
d2(b, S).

From (1.2) above,

‖un − um‖ → 0,

and thus {un} is a Cauchy sequence by definition; our space is complete
therefore this sequence converges to an element in this space, and S is
closed, therefore the limit is in S. Finally,

b̂ ∈ S ⇒ ‖b̂− b‖ = d(b, S).

!

We now wish to describe further the relation between b and b̂.

Theorem 1.2. Let S be a closed linear subspace of V , x an element
of V not in S, and b̂ the element of S closest to b. Then

(x− b̂,b− b̂) ≤ 0.

Proof. Consider the vector θ(x− b̂)− (b− b̂) where 0 < θ ≤ 1.
Because S is a vector space we have θx + (1− θ)b̂ ∈ S, so that

‖θ(x− b̂)− (b− b̂)‖2 = ‖θx + (1− θ)b̂− b‖2 ≥ d2. (1.3)
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Note also that

‖θ(x− b̂)− (b− b̂)‖2 = (θ(x− b̂)− (b− b̂), θ(x− b̂)− (b− b̂))

= θ2(x− b̂,x− b̂) + (b− b̂,b− b̂)

−2θ(x− b̂,b− b̂).

However, by (1.3) we know that

θ2(x− b̂,x− b̂) + (b− b̂,b− b̂)− 2θ(x− b̂,b− b̂) ≥ d2.

By definition, (b− b̂,b− b̂) = d2, therefore

θ2(x− b̂,x− b̂)− 2θ(x− b̂,b− b̂) ≥ 0

and

θ(x− b̂,x− b̂)− 2(x− b̂,b− b̂) ≥ 0

since θ > 0. By letting θ → 0, we obtain our result. !

Theorem 1.3. (b− b̂) is orthogonal to x for all x ∈ S.

Proof. By theorem 1.2, (x − b̂,b − b̂) ≤ 0 for all x ∈ S. Say
x− b̂ = w; we can find x′ ∈ S such that x′ − b̂ = −w. Then:

(x′ − b̂,b− b̂) ≤ 0

but

(x′ − b̂,b− b̂) ≥ 0.

Therefore

(x′ − b̂,b− b̂) = 0.

Since x′ − b̂ is arbitrary in S, we are done. !

Corollary 1.4. If S is a closed linear subspace then b̂ is unique.

Proof. Let b = b̂ + n = b̂1 + n1 Therefore:

b̂− b̂1 ∈ S ⇒ (b̂− b̂1,n1 − n) = 0
⇒ (b̂− b̂1, b̂− b̂1) = 0
⇒ b̂ = b̂1.

!

One can think of b̂ as the orthogonal projection of b on S, and write
b̂ = Pb, where the projection P is defined by the foregoing discussion.

We will now give a few applications of the above results.
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Example. Consider a matrix equation Ax = b where A is an n×m
matrix and n > m. This kind of problem arises when one tries to fit
a large set of data by a simple model. Assume the columns of A are
linearly independent. Under what conditions does the system have a
solution? To clarify ideas, consider the 3× 2 casea11 a12

a21 a22

a31 a32

[
x1

x2

]
=

b1

b2

b3

 .

Let A1 denote the first column vector of A, A2 the second column
vector, etc. In the this case

A1 =

a11

a21

a31

 , A2 =

a12

a22

a32

 .

If Ax = b has a solution, then one can express b as a linear com-
bination of A1, A2, . . . Am, e.g., in the 3 × 2 case x1A1 + x2A2 = b. If
b does not lie in the column space of A (the set of all all linear com-
binations of the columns of A), then the problem has no solution. It
is often reasonable to replace the unsolvable problem by the solvable
problem Ax̂ = b̂ where b̂ is as close as possible to b and yet does lie
in the column space of A. We know from the foregoing that the “best
b̂” is such that b− b̂ is orthogonal to the column space of A. This is
enforced by the m equations:

(A1, b̂− b) = 0, (A2, b̂− b) = 0, . . . , (Am, b̂− b) = 0.

Since b̂ = Ax̂, we obtain the equation

AT (Ax̂− b) = 0 ⇒ x̂ = (AT A)−1ATb.

One application of the above is to “fit” a line to a set of points on
the Euclidean plane. Given a set of points, (x1, y1), (x2, y2), . . . , (xn, yn)
which come from some experiment and that we believe would lie on a
straight line if it were not for experimental error, what is the line that
“best approximates” these points? We hope that if it were not for the
errors, we would have yi = axi + b for all i, and for some a and b, so
we seek to solve a system of equationsx1 1

...
...

xn 1

[
a
b

]
=

y1
...

yn

 .

Example. Consider the system of equations given by Ax = b
where A is an n × m matrix and m < n (there are more unknowns
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than equations). The system has infinitely many solutions. Suppose
you want the solution of smallest norm; this problem arises when one
tries to find the most likely solution to an underdetermined problem.

Before solving this problem we need some preliminaries:

Definition. S ⊂ V is an affine subspace if S = {y : y = x+c, c ,=
0,x ∈ X} where X is a linear subspace of V . Note that S is not a
linear subspace.

Lemma 1.5. If S is an affine subspace and b′ /∈ S, then there exists
x̂ ∈ X such that d(b′, S) = ‖x̂ + c− b′‖. Furthermore, x̂− (b′ − c) is
orthogonal to x for all x ∈ X.(Note that here we use b′ instead of b,
to avoid confusion with the system’s RHS.)

Proof. We have S = {y : y = x + c, c ,= 0,x ∈ X} where X
is a closed linear subspace of V . Thus there exists x′ ∈ X such that
d(b′, X) = d(x′,b′). Now

d(b′, S) = inf
y∈S
‖y − b′‖ = inf

x∈X
‖x + c− b′‖.

The latter occurs when x+ c = x′ and we denote this member of X as
x̂, i.e., x̂ = x′ − c. Hence

d(b′, S) = d(x′,b′) = d(x̂ + c,b′) = ‖x̂ + c− b′‖.
Note that the distance between S and b′ is the same as that between
X and b′. It follows from Theorem 1.3 that x̂ + c − b′ is orthogonal
to X. !

From the proof above we see that x̂ + c is the element of S closest
to b′. For the case b′ = 0 we find that x̂ + c is orthogonal to X.

Now we return to the problem of finding the “smallest” solution of
an underdetermined problem. Assume A has “maximal rank”, i.e., m
of the column vectors of A are linearly independent. We can write the
solutions of the system as x = x0 + z where x0 is a particular solution
and z is the solution to the homogeneous system Az = 0. So the
solutions of the system Ax = b form an affine subspace. As a result,
if we want to find the solution with the smallest norm, i.e., closest to
the origin, we need to find the element of this affine subspace closest to
b′ = 0. From the above we see that such an element must satisfy two
properties. First, it has to be an element of the affine subspace, i.e.,
a solution to the system Ax = b, and second, it has to be orthogonal
to the linear subspace X, which now is the null space (the solutions
of Az = 0). For this purpose, consider x′ = AT (AAT )−1b; this vector
lies in the affine subspace of the solutions of Ax = b, as one can
check by multiplying it by A; furthermore, it is orthogonal to every
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vector in the space of solutions of Az = 0 because (AT (AAT )−1b, z) =
((AAT )−1b, Az) = 0. This is enough to make x′ the unique solution of
our problem.

2. Another Approach to Solving Least Squares Problems

The problem presented in the previous section, of finding an element
in a closed linear space that is closest to a vector outside the space,
lies in the framework of approximation theory where we are given a
function (or a vector) and try to find an approximation to it as a
linear combination of given functions (or vectors). This is done by
requiring that the norm of the error between the given function and the
approximation be minimized. In what follows we shall find coefficients
for this optimal linear combination.

Definition. Let S be an m-dimensional linear vector space. A
collection of m vectors {ui}m

i=1 belonging to S are linearly independent
if and only if λ1u1 + . . . + λmum = 0 implies λ1 = λ2 = . . . = λm = 0.

Definition. Let S be a linear vector space. A collection {ui}m
i=1

of vectors belonging to S is called a basis of S if {ui} are linearly
independent and any vector in S can be written as a linear combination
of them.

Note that the number of elements of a basis can be finite or infinite
depending on the space.

Theorem 1.6. Let S be an m-dimensional linear space. Then any
collection of m linearly independent vectors of S is a basis.

Definition. A set of vectors {ei}m
i=1 is orthonormal if the vectors

are mutually orthogonal and each has unit length, i.e., (ei, ej) = δij,
where δij = 1 if i = j and δij = 0 otherwise.

The set of all the linear combinations of the vectors {ui} is called
the span of {ui} and is written as Span{u1,u2, . . . ,um}.

Suppose we are given a set of vectors {ei}m
i=1 which are an orthonor-

mal basis of S. If b is an element outside the space we want to find
the element b̂ ∈ S, where b̂ =

∑m
i=1 ciei such that ‖b −∑m

i=1 ciei‖ is
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minimized. Specifically we have:∥∥∥∥b−
m∑

i=1

ciei

∥∥∥∥2

=

(
b−

m∑
i=1

ciei ,b−
m∑

j=1

cjej

)

= (b,b)− 2
m∑

i=1

ci(b, ei) +

(
m∑

i=1

ciei ,
m∑

j=1

ciej

)

= (b,b)− 2
m∑

i=1

ci(b, ei) +
m∑

i,j=1

cicj(ei, ej)

= (b,b)− 2
m∑

i=1

ci(b, ei) +
m∑

i=1

c2
i

= ‖b‖2 −
m∑

i=1

(b, ei)
2 +

m∑
i=1

(ci − (b, ei))
2

where we have used the orthonormality of the ei to simplify the ex-
pression. As is readily seen, the norm of the error is a minimum when
ci = (b, ei), i = 1, m, so that b̂ is the projection of b onto S. It is easy
to check that b − b̂ is orthogonal to any element in S. Also, we see
that the following inequality, called Bessel’s inequality, holds

m∑
i=1

(b, ei)
2 ≤ ‖b‖2.

When the basis is not orthonormal, steps similar to the above yield:

‖b−
m∑

i=1

cigi‖2 = (b−
m∑

i=1

cigi,b−
m∑

j=1

cjgj)

= (b,b)− 2
m∑

i=1

ci(b,gi) + (
m∑

i=1

cigi,
m∑

j=1

cjgj)

= (b,b)− 2
m∑

i=1

ci(b,gi) +
m∑

i,j=1

cicj(gi,gj).

If we differentiate the last expression with respect to ci and set the
derivatives equal to zero we get

Gc = r

where G is the matrix with entries gij = (gi,gj), c = (c1, . . . , cm)T and
r = ((g1,b), . . . , (gm,b))T . This system can be ill-conditioned so that
its numerical solution presents a problem. The question that arises is
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how to find, given a set of vectors, a new set that is orthonormal. This
is done through the Gram-Schmidt process which we now describe.

Let {ui}m
i=1 be a basis of a linear subspace. The following algo-

rithm will give an orthonomal set of vectors e1, e2, . . . , em such that
Span{e1, e2, . . . , em} = Span{u1,u2, . . . ,um}.

(1) Normalize u1, i.e., let e1 = u1/‖u1‖.
(2) We want a vector e2 that is orthonormal to e1. In other words

we look for a vector e2 satisfying (e2, e1) = 0 and ‖e2‖ = 1.
Take e2 = u2 − (u2, e1)e1 and then normalize.

(3) In general, ej is found recursively by taking

ej = uj −
j−1∑
i=1

(uj, ei)ei

and normalizing.

Example. Let f(x) ∈ C[0, 2π] with inner product

(f, g) =

∫ 2π

0

f(x)g(x)dx.

What is the closest polynomial of degree 7 to f(x) (i.e., a polynomial
P7 such that

∫ 2π

0 (f(x)−P7(x))2dx is minimized over all polynomials of
degree ≤ 7)? Note that the “best” P7 does exist because the collection
of polynomials of degree less than or equal to 7 is a closed linear sub-
space. Begin by finding an orthonormal basis {b0,b1, . . . ,b7}: Take
b0 = c0 where

∫ 2π

0 c2
0dx = 1⇒ c0 = 1/

√
2π. Next we have b1 = c0+c1x

where
∫ 2π

0 b2
1dx = 1, etc.

The Gram-Schmidt process can be implemented numerically very
efficiently. The process can be rewritten in matrix form as:

e1 = a11u1

e2 = a12u1 + a22u2

...

em = a1mu1 + a2mu2 + . . . + ammum
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with (ei, ej) = δij. The solution of this system is equivalent to finding
e1, e2, . . . , em, such that the following holds

u1 = b11e1

u2 = b12e1 + b22e2

...

um = b1me1 + b2me2 + . . . + bmmem

i.e., what we want to do is decompose the matrix U with columns
u1,u2, . . . ,um into a product of two matrices Q and R, where Q has
as columns the orthonormal vectors e1, e2, . . . , em and R is the matrix

R =


b11 b12 . . . b1m

0 b22 . . . b2m

. . . . . . . . . . . .
0 0 . . . bmm

 .

This is the well-known QR decomposition and there exist efficient ways
to implement it.

3. Fourier Series

Let L2[0, 2π] be the space of square integrable functions in [0, 2π],
i.e., such that

∫ 2π

0 f 2dx < ∞. Define the inner product of two func-

tions f and g belonging to this space as (f, g) =
∫ 2π

0 fgdx and the

corresponding norm ‖f‖ =
√

(f, f). The Fourier series of a function
f(x) in this space is defined as

f(x) = a0 +
∞∑

n=1

an cos(nx) +
∞∑

n=1

bn sin(nx) (1.4)

where

a0 =
1

2π

∫ 2π

0

f(x)dx,

an =
1

π

∫ 2π

0

cos(nx)f(x)dx,

bn =
1

π

∫ 2π

0

sin(nx)f(x)dx.

Alternatively, consider the set{
1√
2π

,
1√
π

cos(nx),
1√
π

sin(nx), . . .

}
, n = 1, 2, . . . .
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This set is orthonormal in [0, 2π] and the Fourier series (1.4) can be
rewritten as

f(x) =
ã0√
2π

+
∞∑

n=1

ãn√
π

cos(nx) +
∞∑

n=1

b̃n√
π

sin(nx). (1.5)

For any function in L2 the series (1.5) converges in the L2 norm, i.e.,
let

S0 =
ã0√
2π

, Sn =
ã0√
2π

+
n∑

m=1

ãm√
π

cos mx +
n∑

m=1

b̃m√
π

sin mx for n ≥ 1

with

ã0 =
1√
2π

∫ 2π

0

f(x)dx,

ãn =
1√
π

∫ 2π

0

cos(nx)f(x)dx,

b̃n =
1√
π

∫ 2π

0

sin(nx)f(x)dx.

Then we have ‖Sn − f‖ → 0 as n→∞.
For any finite truncation of the series (1.5) we have

ã2
0 +

n∑
i=1

(
ã2

i + b̃2
i

)
≤ ‖f‖2. (1.6)

This is the Bessel inequality which becomes an equality (Parseval equal-
ity) as n→∞.

The above series (1.5) can be rewritten in complex notation. Recall
that

cos(kx) =
eikx + e−ikx

2
, sin(kx) =

eikx − e−ikx

2i
. (1.7)

After substitution of (1.7) into (1.5) and collection of terms the Fourier
series becomes

f(x) =
∞∑

k=−∞

ck√
2π

eikx

where f is now complex. (Note that f will be real if for k ≥ 0 we have
c−k = ck.) Consider a vector space with complex scalars and introduce
an inner product that satisfy the axioms (1.1) and define the norm
‖u‖ =

√
(u, u). For the special case where the inner product is given

by

(u, v) =

∫ 2π

0

u(x)v̄(x)dx,
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the functions (2π)−1/2 eikx with k = 0,±1,±2, . . . form an orthonormal
set with respect to this norm. Then the complex Fourier series of a
complex function f(x) is written as

f(x) =
∞∑

k=−∞
c̃k

1√
2π

eikx, ck =

(
f(x),

e−ikx

√
2π

)
.

Let f(x) and g(x) be two functions with Fourier series given respec-
tively by

f(x) =
∞∑

k=−∞

ak√
2π

eikx,

g(x) =
∞∑

k=−∞

bk√
2π

eikx.

Then for their inner product we have

(f, g) =

∫ 2π

0

f(x)ḡ(x)dx =

∫ 2π

0

∞∑
k=−∞

∞∑
l=−∞

akb̄l

2π
ei(k−l)x =

∞∑
k=−∞

akb̄k

and their product we have

f(x)g(x) =
∞∑

k=−∞

ck√
2π

eikx

where

ck =

∫ 2π

0

( ∞∑
n=−∞

∞∑
m=−∞

anbm

2π
ei(n+m)x

)
e−ikx

√
2π

dx

=
1√
2π

∞∑
n=−∞

∞∑
m=−∞

anbmδ(n + m− k)

=
1√
2π

∞∑
n=−∞

anbk−n =
1√
2π

∞∑
n=−∞

ak−nbn.

4. Fourier Transform

Consider the space of periodic functions defined on the interval
[−τ/2, τ/2]. The functions τ−1/2 exp(2πikx/τ) are an orthonormal ba-
sis for this space. For a function f(x) in this space we have

f(x) =
∞∑

k=−∞
ckek(x), ck = (f, ek(x))
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where

ek(x) =
exp(2πikx/τ)√

τ
and

(f, ek) =

∫ τ
2

− τ
2

f(x)ek(x)dx.

Substituting the expression for the coefficient in the series we have

f(x) =
∞∑

k=−∞

(∫ τ
2

− τ
2

f(s)
exp(2πiks/τ)√

τ
ds

)
exp(−2πikx/τ)√

τ

=
∞∑

k=−∞

1

τ

(∫ τ
2

− τ
2

f(s) exp(2πiks/τ)ds

)
exp(−2πikx/τ).

Define

f̂(l) =

∫ τ
2

− τ
2

f(s) exp(−ils)ds.

Then the quantity in parantheses above becomes f̂(l = 2πk/τ) and we
have

f(x) =
∞∑

k=−∞

1

τ
f̂(2πk/τ) exp(2πikx/τ). (1.8)

Pick τ large and assume that the function f tends to zero at ±∞ fast
enough so that f̂ is well defined and that the limit τ → ∞ is well
defined. Write ∆ = 1/τ . From (1.8) we have

f(x) =
∞∑

k=−∞
∆f̂(2πk∆) exp(2πik∆x).

As ∆→ 0 this becomes

f(x) =

∫ ∞

−∞
f̂(2πt) exp(2πitx)dt

where we have replaced k by the continuous variable t. By the change
of variables 2πt = l this becomes

f(x) =
1

2π

∫ ∞

−∞
f̂(l) exp(ilx)dl.

Collecting results we have

f̂(l) =

∫ ∞

−∞
f(s) exp(−ils)ds,

f(x) =
1

2π

∫ ∞

−∞
f̂(l) exp(ilx)dl.
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The last two expressions are the Fourier transform and the inverse
Fourier transform respectively. There is no universal agreement on
where the quantity 2π that accompanies the Fourier transform should
be. It can be split between the Fourier transform and its inverse as
long as the product remains 2π. In what follows we use the splitting

f̂(l) =
1√
2π

∫ ∞

−∞
f(s) exp(−ils)ds,

f(x) =
1√
2π

∫ ∞

−∞
f̂(l) exp(ilx)dl.

Instead of L2[0, 2π], now our space of functions is L2(R), i.e., the space
of square integrable functions on the real line.

5. Properties of the Fourier Transform

Consider two functions u(x) and v(x) with Fourier series given re-
spectively by

∑
ak exp(ikx) and

∑
bk exp(ikx). Then as we saw above

the Fourier coefficients for their product are

ck =
1√
2π

∞∑
k′=−∞

ak′bk−k′ .

This property carries over to the case of the Fourier transform, so for
two functions f and g with Fourier transforms f̂ and ĝ, we have

f̂g =

∫ ∞

−∞
f̂(k′)ĝ(k − k′)dk′

=

∫ ∞

−∞
f̂(k − k′)ĝ(k′)dk

= f̂ ∗ ĝ

where ∗ stands for “convolution.” This means that the Fourier trans-
form of a product of two functions equals the convolution of the Fourier
transforms of the two functions.

Another useful property of the Fourier transform concerns the Fourier
transform of the convolution of two functions. Assuming f and g are
bounded, continuous and integrable the following result holds for their
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convolution h(x) = f(x) ∗ g(x):

ĥ = (̂f ∗ g) =

∫ ∞

−∞

(∫ ∞

−∞
f(ξ)g(x− ξ)dξ

)
e−ikxdx

=

∫ ∞

−∞

∫ ∞

−∞
f(ξ)g(y)e−ikyeikξdξdy

=

∫ ∞

−∞
f(ξ)e−ikξdξ

∫ ∞

−∞
g(y)e−ikydy

= f̂ ĝ.

Thus, we have proved that the Fourier transform of a convolution of
two functions is the product of the Fourier transforms of the functions.

In addition, Parseval’s equality carries over to the Fourier transform
and we have ‖f‖2 = ‖f̂‖2 where ‖ · ‖ is the L2 norm on R. We also
have the results

(f + g, f + g) = (f̂ + ĝ, f̂ + ĝ)

‖f‖2 + ‖g‖2 + (g, f) + (f, g) = ‖f̂‖2 + ‖ĝ‖2 + (ĝ, f̂) + (f̂ , ĝ)

Re(f, g) = Re(f̂ , ĝ).

Futhermore, consider a function f and its Fourier transform f̂ .
Then for the transform of the function f(x/a) we have

f̂
(x

a

)
=

1√
2π

∫ ∞

−∞
f

(x

a

)
e−ikxdx.

By the change of variables y = x/a we have

f̂
(x

a

)
=

a√
2π

∫ ∞

−∞
f(y) exp(−iaky)dy

= af̂(ak).

Finally, consider the function f(x) = exp(−x2/2t) where t is a
parameter. For its Fourier transform we have

f̂(k) =
1√
2π

∫ ∞

−∞
exp

(
−x2

2t

)
exp(−ikx)dx

=
1√
2π

∫ ∞

−∞
exp

[
−

(
x2

2t
+ ikx

)]
dx.
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By completing the square in the exponent we get

f̂(k) =
1√
2π

∫ ∞

−∞
exp

−(
x√
2t

+ ik

√
t

2

)2

− tk2

2

 dx

=
1√
2π

exp
(−tk2/2

) ∫ ∞

−∞
exp

−(
x√
2t

+ ik

√
t

2

)2
 dx. (1.9)

The integral in the last expression can be evaluated by a change of
variables, but we have to justify that such a change of variables is
legitimate. To do that we quote a result from complex analysis.

Lemma 1.7. Let φ(z) be an analytic function in the strip |y| < b
and suppose that φ(z) satisfies the inequality |φ(x + iy)| ≤ Φ(x) in the
strip where Φ(x) ≥ 0 is a function such that lim|x|→∞Φ(x) = 0 and∫∞
−∞Φ(x)dx < ∞. Then the value of the integral

∫∞
−∞ φ(x + iy)dx is

independent of the point y ∈ (−b, b).

The integrand in (1.9) satisfies the hypotheses of the lemma and so
we are allowed to perform the change of variables

y =
x√
2t

+ ik

√
t

2
.

Thus (1.9) becomes

f̂(k) =
1√
2π

exp(−tk2/2)

∫ ∞

−∞
exp(−y2)

√
2tdy

=
1√
2π

exp(−tk2/2)
√

2tπ

=
√

t exp(−tk2/2).

By setting t = 1 we see in particular that the function f(x) = exp(−x2/2)
is invariant under the Fourier transform.
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